Статистическая обработка результатов измерения
Завершающей стадией количественного анализа химического состава вещества любым методом является статистическая обработка результатов измерений. Она позволяет оценить систематические и случайные погрешности измерений.
Используя приемы математической статистики, можно:
• рассчитать основные метрологические характеристики методики анализа (оценить воспроизводимость и правильность полученных данных, отбросив результаты, содержащие промахи);
• определить методом регрессивного анализа вид функциональной зависимости аналитического сигнала от концентрации (содержания) определяемого элемента;
• рассчитать метрологические характеристики параметров градуировочного графика и результатов анализа;
• представить результаты статистической обработки в виде компактных табличных данных, позволяющих оценить воспроизводимость и правильность полученных результатов;

• в случае необходимости оценить нижнюю границу определяемых содержаний вещества, предел определения (обнаружения), коэффициент чувствительности.
Расчет метрологических характеристик результатов измерений (определений) при малой выборке
При химическом анализе пищевых продуктов содержание вещества в пробе устанавливают, как правило, по небольшому числу параллельных определений (n). Для расчета погрешностей определений в этом случае пользуются методами математической статистики, разработанными для малого числа определений. Полученные результаты рассматривают как случайную (малую) выборку из некоторой гипотетической генеральной совокупности, состоящей из всех мыслимых в данных условиях наблюдений.
Для практических целей можно считать, что при числе измерений п — 20-30 значения стандартного отклонения генеральной совокупности (а) — основного параметра и стандартного отклонения малой выборки (S) близки (S = у).
Оценка воспроизводимости результатов измерений
Среднее выборки. Пусть x1, х2, ... хп обозначают п результатов измерений величины, истинное значение которой р.. Предполагается, что все измерения проделаны одним методом и с одинаковой точностью. Такие измерения называют равноточными.
В теории ошибок доказывается, что при условии выполнения нормального закона при п измерениях одинаковой точности среднее арифметическое из результатов, полученных при всех измерениях, является наиболее вероятным и наилучшим значением измеряемой величины:
Это среднее значение принимают за приближенное и пишут X = м.
Единичное отклонение — это отклонение отдельного измерения от среднего арифметического:
Алгебраическая сумма единичных отклонений равна нулю:
Дисперсия, стандартное отклонение, относительное стандартное отклонение. Рассеяние результатов измерений относительно среднего значения принято характеризовать дисперсией S2:
или стандартным отклонением (средним квадратичным отклонением) — S:
которое обычно и приводят при представлении результатов измерений (анализа) и которым характеризуют их воспроизводимость.
Стандартное отклонение, деленное на среднее выборки, называют относительным стандартным отклонением:
В общем случае метод анализа оптимален в той области содержаний, в которой и абсолютное (S) и относительное (Sr) стандартное отклонение имеют минимальные значения.
Определение и исключение грубых погрешностей
В литературе приведены различные методы оценки и исключения грубых погрешностей.
Рассмотрим наиболее простой для практического использования метод исключения грубых промахов по Q-критерию. Для этого составляют отношение:
где х1 — подозрительно выделяющийся результат определения (измерения);
х2 — результат единичного определения, ближайший по значению к х1;
R — размах варьирования;
Я = хмах - хмин — разница между наибольшим и наименьшим значением ряда измерений. При малой выборке (п < 10) размах варьирования служит также одной их характеристик рассеяния результатов измерений.
Вычисленное значение Q сопоставляют с табличным значением Q (Р, n1) (табл. 1.1).
Наличие грубой погрешности доказано, если Q > Q (Р, пi).
Оценка правильности результатов измерений (определений)
После того как осуществлена проверка грубых погрешностей (в случае подозрительных результатов измерений) и их исключение, производят оценку доверительного интервала (Ах) для среднего значения X и интервальных значений X ± Ах.
Доверительный интервал (Ах). Если воспроизводимость результатов измерений (методики анализа) характеризуют стандартным отклонением, то сами результаты измерений (определений) характеризуют доверительным интервалом среднего значения X, который рассчитывают по формуле
где tP, f — квантиль распределения Стьюдента при числе степеней свободы f = п - 1 и двухсторонней доверительной вероятности Р (значения tp, f см. в табл. 1.2).

Обычно для расчетов доверительного интервала пользуются значениями Р = 0,95; иногда достаточно Р = 0,90, но при ответственных измерениях требуется более высокая надежность (Р = 0,99).
Коэффициент tp, f показывает, во сколько раз разность между истинным и средним результатами больше стандартного результата.