Атомно-абсорбционный спектральный анализ

Категория: Методы и техническое обеспечение контроля качества товаров

Метод атомно-абсорбционного анализа (AAA) основан на резонансном поглощении света свободными атомами, возникающем при пропускании пучка света через слой атомного пара. Селективно поглощая свет на частоте резонансного перехода, атомы переходят из основного состояния в возбужденное, а интенсивность проходящего пучка света на этой частоте экспоненциально убывает по закону Бугера-Ламберта:

где кн — коэффициент поглощения света;

I — толщина поглощающего слоя.

При практических измерениях обычно пользуются значением оптической плотности поглощения (поглощательной способностью):

Для применения этого соотношения в количественном химическом анализе необходимо установить связь между коэффициентом поглощения к0 и концентрацией атомов в поглощающем слое.

В современной технике атомно-абсорбционного анализа используются два способа атомизации — атомизация в пламени и электрических атомизаторах.

Атомизация в пламени

Для получения пламени используют различные комбинации горючих газов с окислителями, например водорода, пропана или ацетилена с воздухом или оксидом азота. Кислород в чистом виде почти не применяют как окислитель, так как смеси горючих газов с ним обладают очень высокой скоростью горения, с трудом поддаются контролю.

В практике атомно-абсорбционного анализа наибольшее применение получили два пламени: воздушно-ацетиленовое и пламя оксида азота с ацетиленом. Эти две газовые смеси взаимно дополняют друг друга и совместно позволяют определять примерно 70 элементов. Воздушно-пропановое пламя пригодно в основном для определения щелочных металлов; кадмия, меди, свинца, серебра и цинка.

Первичная реакционная зона (поз. 1, рис. 2.6) для анализа не используется, так как температура в ней менее 1000°С.

Зона внутреннего конуса (2) благоприятна для измерения атомной абсорбции элементов, образующих термостойкие оксиды и гидроксиды (алюминия, молибдена и т. п.). Вторичная реакционная зона (3) предпочтительна для измерения атомной абсорбции элементов, не образующих термостойких оксидов (медь, се ребро, цинк, марганец и т. п.). Измерение в этой зоне характеризуется наибольшей стабильностью и наименьшими шумами.

Образование свободных атомов в пламени является следствием большой совокупности процессов, включая:

•  получение аэрозоля из раствора анализируемой пробы;

•  испарение растворителя из капелек аэрозоля;

•  испарение твердых частичек аэрозоля и диссоциацию молекул на атомы;

•  процессы возбуждения и ионизации атомов, а также образования новых соединений в результате реакций с радикалами, анионами, атомами кислорода и углерода, имеющимися в пламени.

Несмотря на простоту этого способа атомизации, он имеет ряд серьезных ограничений, обусловленных прочими реакциями в пламени и малой продолжительностью пребывания частиц в нем (10-3 с). Кроме того, пламена не безопасны в работе и требуют расходов довольно больших объемов газообразных горючего и окислителя.

Более дешевыми, безопасными и эффективными во многих отношениях оказались электротермические атомизаторы,

Атомизация в электротермических атомизаторах

Очень простой в эксплуатации является тонкостенная графитовая печь, схема которой показана на рис. 2.7.

Анализируемую пробу в виде раствора дозируют микропипеткой в количестве 5-100 мкл через центральное отверстие на стенку холодной печи, концы которой закреплены внутри массивных графитовых контактов. Печь постоянно обдувается потоком аргона, что предохраняет ее от обгорания и способствует удалению испаренной пробы из атомизатора.

После высушивания проба испаряется до атомов, и атомный пар заполняет всю трубку.

Температура графитовой печи регулируется специальным электронным устройствам с программным управлением.

Обычно температурную программу по времени можно разделить на 3 этапа: высушивание пробы (испарение ра-створителя), озоление (пиролиз органических компонентов и удаление некоторых других компонентов матрицы), атомизация, т. е. собственно испарение и переход определяемого элемента в состояние атомного пара.

Каждому этапу соответствует своя оптимальная температура. Необходимость в такой ступенчатой температурной программе связана с тем, что на стадиях высушивания и озоления часто наблюдается другой сигнал абсорбции, обусловленный рассеянием зондирующего излучения дымом, частицами золы и т. д.

Атомизация пробы в графитовой печи в зависимости от физико-химических особенностей определяемых элементов и матриц пробы может происходить двумя путями:

•   проба первоначально испаряется с нагретой поверхности атомизатора, а затем диссоциирует на элементы в газовой фазе;

•   проба первоначально термически диссоциируется до соответствующих оксидов, которые затем восстанавливаются до металла, либо углеродом до твердофазной реакции на границе поверхностей:

либо оксидом углерода:

Метод атомной абсорбции с применением электротермического атомизатора обеспечивает рекордно низкие пределы обнаружения по многим элементам. Их численные значения

колеблются для разных элементов от десятых до десятитысячных долей нанограмма в одном миллиметре раствора пробы, достигая иногда в абсолютном выражении значения 10-12_10-4 г

Для измерения атомной абсорбции применяют однолучевые и двухлучевые атомно-абсорбционные спектрофотометры (анализаторы).